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h study is made of the proper t ies  of solutions for a one-dimensional  s ingle-veloci ty  t ranspor t  
equation for par t ic les  in a medium in which the probabil i t ies of the e lementa ry  p rocesses  de-  
pend on the direction,  and the scat ter ing indicatrix (phase function) is spher ical .  It is shown 
that the l inear pa ramete r  of the asymptotic exponential reduction in the global par t ic le  density 
when orientational inhomogeneity is allowed for can differ strongly from the value found by 
averaging the probabil i t ies of the e lementary  p rocesses  over the direct ions.  The rote played 
by the s t ruc ture  of the orientational inhomogeneity is considered.  The resul ts  are  general ized 
to the case of anisotropy of the scat ter ing.  

To t rea t  the t ranspor t  of par t ic les  or  radiation in a medium r igorous ly ,  one must  solve the co r respond-  
ing t ranspor t  equation (see, for example, [1,2]). This equation has the s implest  form when the scat ter ing in- 
dicatr ix  (phase function) is spher ical ,  a situation that a r i ses  in a number  of cases .  In solving t ranspor t  
equations, one general ly  assumes ,  implicit ly or explicitly, that the proper t ies  of the medium do not depend 
on the direction in which a par t ic le  moves.  But if we are  concerned with anisotropic s t ruc tures  - for 
example, c rys ta l s  of d ispersed  media with well-defined orientation - the behavior of a part icle must  obvi- 
ously depend in some manner  on the direction on which it is moving. However, it is impossible to say in 
advance how much the anisotropy affects the s tat is t ical  cha rac t e r i s t i c s  of the t ranspor t  p roces s .  Some 
light has been cas t  on this problem by Lindhard [3], who has considered orientational effects associated 
with the motion of charged par t ic les  in a c rys ta l  latt ice.  In this paper,  we consider  the one-dimensional  
problem of the distribution of isotropical ly  sca t te red  par t ic les  in an infinite medium in which the probabil i -  
ties of sca t ter ing and absorption of par t ic les  are  functions of the angle between the direction in which the 
par t ic les  move and the no rma l  to a plane that is an isotropic source  of par t ic les .  The resul ts  are  also 
general ized to the case of anisotropic sca t ter ing.  

If f ( x ,  ~) is the par t ic le  distribution function, depending on the l inear coordinate  x and on ~, which is 
the cosine of the angle measured  f rom the x axis, the t ranspor t  equation, which descr ibes  the var ia t ion in 
x of the distribution function, can be written in the form 

I 

0~ + E(~)/(x,,a) ---2-  ! E~(~') f(x ,~t ' )d~'----+5(x)  (1) 

Here,  Z - Z s and .~s are  the direct ion-dependent  macroscop ic  absorption and scat ter ing c r o s s  s e c -  
t ions, respect ively ,  and 5 is the Dirac delta function. Note that the t e rm "macroscop ic  c ros s  section" is 
mere ly  another name for the rec ip roca l  mean free path in the given direct ion.  

Equation (1) is solved by a method s imi la r  to those used to solve problems in which the c ros s  s ec -  
tions do not depend on the angles [1,21. Generally,  we are  only in teres ted in the global part icle  density, 
i .e. ,  in 

1 

(x) = S I (x, la) d~ (2) 
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F o r  the  funct ion  c a l c u l a t e d  in a c c o r d a n c e  wi th  (2), we obta in  

~ i (  ~ ~ z,d~ ~-~ ~ d o )  (3) 
~oo --1 --1 

The  e x p r e s s i o n  (3) i s  the  g e n e r a l  so lu t ion  of the  p r o b l e m  for  d i f f e r e n t  d e p e n d e n c e s  Z (u) and 22 s (it). It 
i s  a good  i d e a  to  c o n s i d e r  s o m e  s p e c i a l  c a s e s  in wh ich  (3) r e d u c e s  to  p e r s p i c u o u s  e x p r e s s i o n s  tha t  r e v e a l  
the  e f f ec t  of the  a n i s o t r o p y .  

We a s s u m e  tha t  Z q~) and r. s (u) a r e  even  func t ions  (the " f o r w a r d "  and " b a c k w a r d "  d i r e c t i o n s  a r e  on 
an equa l  foot ing)  and tha t  Z s  Z - I  = b = c o n s t  < 1 (the s c a t t e r i n g  and a b s o r p t i o n  even t s  a r e  due to  the  s a m e  
c e n t e r s ) .  

Le t  

{A ' ,  Ir~l<a 
~ . =  a ~, I~I>A (4) 

Thus ,  we a s s u m e  tha t  the  x ax i s  c o i n c i d e s  wi th  the  " l e a s t  t r a n s p a r e n t "  d i r e c t i o n .  The  n u m e r i c a l  
v a l u e  of  the  p a r a m e t e r  A d e t e r m i n e s  the  r a n g e  of v a r i a t i o n  in the  v a l u e s  of the  c r o s s  s e c t i o n s .  

Subs t i t u t i ng  (4) into (3), we obta in  

oo 

' (2 ~ 1 7 6  b l n a ~  --  In --  b ( l  -- A) + 
(x )  = ~ - -  io) a - -  io H [ - 2 -  

X [j~_ in a +~o) ( i m . _ l A 2 a ] l y a A a - { - i o J l [ - l e i , o  x do) 
a - -  io) - -  ~ a io) / ~ " : ~ . 1 J  - 5 -  

(5) 

The  i n t e g r a n d  in (5) has  two s i m p l e  p o l e s  on the i m a g i n a r y  a x i s ,  •  coo < A a ,  wh ich  a r e  found f r o m  
a t r a n s c e n d e n t a l  equa t ion ,  and fou r  b r a n c h  po in t s ,  •  •  The  po in t  co = 0 is  not  a po l e .  The  i n t e g r a l  
(5) i s  m a d e  up of  the  c o n t r i b u t i o n  f r o m  the r e s i d u e ,  J ,  a t  the  po le  +ice 0 and the i n t e g r a l ,  I,  a r o u n d  a c o n t o u r  
tha t  c i r c u m v e n t s  the  cu t  in the  u p p e r  h a l f - p l a n e :  

w h e r e  

(z) = ] + I (6) 

a { i - -  b ti A~a2 _ o)~2 In Aa - o)0~ 
l ~ ~ 2- b - -a)  + ao)~ a-T-+~j  

A (a2A 2 ~- O)02~ -1 e_tOolx[ • t -- b (t --  a) +~lnAZa Aa --  (00 ~ c ~ 1 7 6  ~ .~. AZa z _ o)a2. J 
. b A a  "l- too a 2 - -  o}0 2 

oo 

• < { I  - b ( I  = A)  _ T ~ ~  - -  y + , , j j  - -  4 7 /  

I 
i - - y  x.-o., ? +  T 

A 

x({~-b( i -~ , ) -~F. . r -+-Tky y, ~ .~ I  +-v(y + ~-} ) 
X e "-aulxl ely 

Y 

(7) 

(8) 

The c o m p o n e n t  (7) of  the p a r t i c l e  d e n s i t y  i s  u s u a l l y  c a l l e d  the  a s y m p t o t i c  c o m p o n e n t ,  s i n c e  i t  d e t e r -  
m i n e s  the  b e h a v i o r  of  9 (x) a t  l a r g e  v a l u e s  of  the a r g u m e n t  [ e l e m e n t a r y  e s t i m a t e s  show tha t  I, wh ich  i s  g iven  
by  (8), d e c r e a s e s  f a s t e r  than  J ] .  

T h u s ,  9 (x) d e c r e a s e s  e x p o n e n t i a l l y  wi th  i n c r e a s i n g  d i s t a n c e  f r o m  the  e m i t t i n g  p l a n e  with  c h a r a c t e r -  
i s t i c  l i n e a r  p a r a m e t e r  co0 - l ,  which ,  a s  in the  i s o t r o p i c  c a s e ,  m a y  be  c a l l e d  the  d i f fus ion  l eng th .  An a p p r o x i -  
m a t e  so lu t ion  of  the  t r a n s c e n d e n t a l  equa t ion  for  co o is  

(oo ~ Aa } /3 ( i  --  b) /b  (4  - -  3A) (9) 
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This holds when (1 "- b) /A << 1, i .e. ,  when the absorption is weak. Thus, the diffusion length in the 
" least  t ransparent"  direct ion depends very  s t rongly on the extent to which the scat ter ing absorption c r o s s  
sections are  anisotropic .  For  example, if ~ = 0.7, the diffusion length for the region in which (9) is applic-  
able is about twice as large  as for the isotropic case with the same value of a .  If A is sufficiently small ,  
the diffusion length var ies  as A -1 . 

It is interest ing to compare  w0, the effective macroscopic  c r o s s  section for the reduction of the pa r -  
ticle density along the direct ion of the no rma l  to the emitting plane in the asymptotic region,  with the 
analogous mean value 

We find 

--1 

~o 3A 
(o2 V~:-3a(~ + 3~-ao) (10) 

It can be seen f rom (10) that this rat io var ies  within wide limits when A var ies .  When A = 1, the rat io 
is equal to unity, as it must ;  when A << 1, the rat io is ~ 3 A / 2 .  Thus, if A is small ,  i .e. ,  the " t ransparency"  
is s t rongly anisotropic ,  the part icle  density decreases  much more  slowly than one would expect f rom averag-  
ing the cha rac t e r i s t i c s ;  this is t rue  even in the direction of least  t ransparency .  

Now suppose 

Z=aA~ for t~+l~l~l~Pt i  (11) 

The step function (11) should be regarded  as a natural  approximation of all possible dependences Z = 
:~Oz). 

Integrating, we find a solution1 of the form (6) with 

] - -  

ab [ "-~ Ai~ - -  p,i~oao'Zl a2 A{, ~ - -  ~i+12~JZla2 ] ~ 
(12) 

At the same time 

i 

The expression (13) holds if the absorption is weak. It is c lear  that a gap of a rb i t r a r i ly  smal l  but 
finite width with a vanishing value of A resul ts  in a reduction of r 0 to zero .  This means that the par t ic le  
density does not dec rease  in the asymptotic  region of large Ix ]. It can also be seen from (13) that deep 
local dips in the c ros s  sections reduce w0 significantly only when A i tends to zero  fas ter  than the width, 
> i -  ~i+1, of the corresponding interval  of angles.  It is  therefore  c lear  that in the case descr ibed by (9) we 
have w0 ~ 0 as A ~ 0, whereas  if the c r o s s  sections sat isfy the law 

( a  ~, I,~l<a ~ = a  ~,  I ~ I ~ a  (k< l )  (14) 

this is not the case .  

Note that all the above formulas ,  and also those used la ter ,  go over into the formulas  for an isotropic 
sys tem (see, for example, [2]) in the corresponding special  cases .  

We now solve the problem for an anisotropic sca t ter ing law: If the distribution f~mction is independent 
of the azimuth, the original  s ingle-veloci ty  t ranspor t  equation can be written in the form 

ra~O - - I  

(15) 
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The function R(u) de t e rmines  the distr ibution of the c rea ted  par t i c les  over  the d i rec t ions .  The s c a t -  
t e r ing  indieat r ix  is nonspher ica l ;  gm a re  the coeff icients  of the expansion in Legendre  polynomials  of the 
angular  sca t t e r ing  function. It  is to be a s sumed  that 

1 

go=l, yR(l~)dtt=t 

Under these conditions,  Eq. (15) is sa t i s f ied  by 

i co 
f (x, ~) = -~- 

--oo rtl~} 

where  

= ~ 2n --}- i 

~ 1  n = O  

Equation (17) gives a s y s t e m  of a lgebra ic  equations for  finding hm(w); the o rde r  of the s y s t e m  is de-  
t e rmined  by the highest  index for which gm ~ 0. If 

then (16) becomes  

gl = g, gm>l = 0 

oo 

-[-W ho q- W ghlB ) (Y' q- go}p,)-l e~'~=do~ (18) 

At the s ame  t ime  

ho =Do~D,  hi = D1/D (19) 

where  

l 1 1 

-- 1 --i --I 

1 1 I I 

--I ---1 --I --I 

v @) -- ~, (~)[y, (N + ~:~l =~ 

(20) 

Substituting (19) and (20) into (18), we obtain the spat ia l  and angle distr ibution of the densi ty of 
neut rons  for a r b i t r a r y  dependences R(u), GOD, Zs(U). Integrat ing (18) with r e spec t  to p ,  we find the spat ia l  
var ia t ion  of ~0 (x), the global pa r t i c le  densi ty .  To in tegra te  with r e s p e c t  to r we mus t  find the poles of the 
function 

1 

e~X f (DR -4- ~/~Do -t- ~/2D~gl -t) (E -q- io)lx) -~ d}x 
D 

--1 

(21) 

The m o s t  in te res t ing  poles of (21) a re  those that  a r e  de te rmined  by the equation 

D = O ;  

the r eason  is th is .  those fo r  which [r is sma l l e s t  a r e  respons ib le  for  the asymptot ic  behavior  of the 
global densi ty of neu t rons  in the case  of weak absorpt ion ~ - Zs  << Z) under  ve ry  genera l  assumpt ions  con-  
ce rn ing  the fo rm of the functions R (u), Z (u), and Z s (/~). Assuming  that [Wpl is smal l  compared  with Z 
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(weak absorption),  making e lementary  t ransformat ions  in the express ion (20) for D, and recal l ing that the 
functions Z~u) and Zsq~) are  even, we find 

~p~ .=  - -  A / B 

A (t i ~ 8  x = __ -E-- d[~) (i 3gS y'8~ ~ ' - ~ a ~ )  
0 O 

o o 0 o 

0 

Thus, the asymptotic solution gives an exponential dec rease  with linear pa ramete r ,  IWpt -1, that de-  
pends on Z s (u), Y_, q~ ), and the degree of anisotropy of the scat ter ing function in the labora tory  f rame.  It is 
readi ly  seen that an anisotropy of the scat ter ing reduces  Ir i .e. ,  it re ta rds  the dec rease  of q~(x) with in- 
creas ing Ix J for any dependences Z (u) and Zs(U). 
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